Fulltext

The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem

استعمال طريقتي المركبات الرئيسية والمربعات الصغرى الجزئية لتقدير معلمات أنموذج الانحدار اللوجستي ثنائي الاستجابة في حالة وجود مشكلة التعدد الخطي

محمود مهدي البياتي --- هديل حميد شاكر

journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية
ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 106 Pages: 338-355
Publisher: Baghdad University جامعة بغداد

Abstract

The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. The large number of explanatory variables usually used to illustrate the response led to the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not very accurate. In this paper, examined methods for estimating the parameters of the logistic regression model in the case of the problem of linear multiplicity These methods are: Principal components of logistic regression method and Partial least square regression method. The results of the simulation showed that the method (PCLR(3pc’s)) is best for estimating the parameters of the binary logistic regression model response in the case of a problem of linear multiplicity.

المستخلصيعد أنموذج الانحدار اللوجستي من النماذج اللاخطية الذي يهدف الى الحصول على مقدرات تمتلك كفاءة عالية , كما انه يعطي الباحث فكره عن مقدار تأثير المتغير التوضيحي على متغير الاستجابة الثنائية.أن العدد الكبير لمتغيرات توضيحية تستعمل عادة لتوضيح الاستجابة ادى الى ظهور مشكلة التعدد الخطي بين المتغيرات التوضيحية التي تجعل تقدير معلمات النموذج ليست دقيقة جدا.يتم عرض في هذا البحث طريقتين لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي (Multicollinearity) وهما : طريقة المركبات الرئيسية للانحدار اللوجستي (PCLR), وطريقة انحدار المربعات الصغرى الجزئية(PLSR). اذ تم اجراء المقارنة بين هاتين الطريقتين من خلال اسلوب المحاكاة وبأستعمال معيار المقارنة متوسط مربعات الخطأ(MSE) للوصول الى الطريقة الأفضل في تقدير المعلمات في حالة وجود مشكلة التعدد الخطي, وقد بينت نتائج المحاكاة أن طريقة (PCLR(3pc’s)) هي الافضل في تقدير معلمات أنموذج الانحدار اللوجستي ثنائي الاستجابة في حالة وجود مشكلة التعدد الخطي.

Keywords

Logistic regression --- binary data --- Principal components --- Partial least square --- multicollinearity --- الانحدار اللوجستي --- البيانات الثنائية --- المركبات الرئيسية --- المربعات الصغرى الجزئية --- مشكلة التعدد الخطي