STRUCTURAL BEHAVIOR OF THIN RPC WALL PANELS WITH VARYING STEEL REINFORCEMENT AND ASPECT RATIO SUBJECTED TO AXIAL ECCENTRIC UNIFORMLY DISTRIBUTED LOADING

Abstract

This paper presents experimental study of structural behavior of thin Reactive Powder Concrete (RPC) wall panels subjected to axial eccentric uniformly distributed loading with varying steel reinforcement ratio (ρ) and aspect ratio (AR= H/L). The experimental program included testing of six two-way thin RPC wall panels, fixed at all sides and applying the load axially with eccentricity equal to (t/6). The results indicates that the ultimate strength of the RPC wall panel decreases with increase in AR from (1.25 to 2.00) for panels with H/t = 18.75. The decreasing in ultimate load for RPC wall panels is about 16% and 38.7%, for an increase in AR from 1.25 to 2.0 for panels with ρ = 0.012566, and about 6.38% and 36.2%, for an increase in AR from 1.25 to 2.0 for panels with ρ = 0.007854.The ultimate strength of RPC wall panel increases with an increase of percentage of steel reinforcement ratio (ρ). For an increase in reinforcement ratio from ρ = 0.007854 to ρ = 0.012566 the increase is about (6.4, 4.76 and 2.22) % for walls with AR (1.25, 1.50 and 2.00) respectively. The lateral deflection decrease with the increase of percentage of steel reinforcement ratio from (0.007854 to 0.012566) under two-way in plane loading, When AR= 1.25 the reduction about (1.22 times) and When AR= 2.00 the reduction about (1.11 times). The lateral deflection of RPC wall panels decrease with the increase in aspect ratio.