Effects of Rice Husk Ash–Magnesium Oxide Addition on Wear Behavior of Aluminum Alloy Matrix Hybrid Composites

Abstract

A336.0 aluminum alloy used to fabricate hybrid composites using rice husk ash (RHA) and MgO particles as reinforcement. The influence of the particles on the wear behavior of A336.0 aluminum alloy as a matrix that reinforced with MgO and RHA was investigated. Firstly, the rice husk burned at 700°C and then heat treated at 1100°C for 2 hrs. The ash characterized by X-ray florescence and X-ray diffraction. Less than 53 and 125 micron are the particle sizes of MgO and RHA respectively. The hybrid composites manufactured using stir casting method in two steps. A336.0 aluminum alloy reinforced with 4:0, 3:1, 2:2, 1:3 and 0:4 of RHA: MgO with 10 wt% total reinforcement phase. Optical microscope and X-ray diffraction were used to characterize the prepared hybrid composites. Dry slidingwear, hardness, apparent density, percentage of porosity and coefficient of friction were examined. Results indicated that porosity, apparent density and hardness enhanced with increasing MgO, while increasing wt% of RHA decreased the apparent density. Results indicated that with inceasing the applied load the wearrate of the composites was enhanced. Coefficient of friction varies inversely with applied load and wt% of RHA. Hardness increased with increasing RHA while the friction coefficient and the wear rate decreased. The minimum wear rates were at 10% RHA and Al-alloy-(RHA-MgO) [3:1] composites, while the minimum friction coefficients were at 10% RHA composites.