GEOMETRICALLY NONLINEAR ANALYSIS OF IMPERFECT LAMINATED COMPOSITE PLATES WITH A VARIABLE FIBER SPACING

Abstract

The primary objective of research is to determine the improved structural efficiency of plates can be with variable fiber spacing. The Post-buckling of laminated composite plate with variable fiber spacing is obtained numerically, using eight node isoparametric quadrilateral elements (serendipity element) with five degree of freedom per node. The mathematical formulation is based on first-order shear deformation theory and von-Karman non-linearity. The effect of the initial geometric imperfection, fiber spacing, orientation fiber, and direction of in-plane loading were considered. Numerical results for boron/Epoxy fiber reinforced laminates are presented for the different effects of the composite plate under in-plane loading. This study showed that the post buckling behavior of composite plate very sensitive for type of distribution fiber and the seventh distribution equation gives maximum buckling load and smallest deformation.