Aluminum Concentration Drives the Structural Evolution of Magnetron Sputtering (Ti, Al) C Thin Film

Abstract

The effect of deposited Al on the structural evolution of TiC films with a chemical composition variation has investigated during combinatorial magnetron sputtering of binary ceramic (Ti, Al) C. The here produced thin films have been investigated by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction technique XRD. The structural evolution of combinatorial magnetron sputtered Ti-Al-C system deposited at room temperature fined to be located in the extent of: Ti at.%= 36.74-60.55, Al at.%= 12.05-30.61 and C at.%= 22.53-47.69. XRD results show that films are constituted of mostly cubic (Ti, Al) C phase as well as an X-ray amorphous region in the range of Ti at. %= 37.31-54, Al at. %= 27.67-30.61 and C at. %= 22.53-36.92. A clear evidence for the formation of two different structural regions driving by Al concentration has been observed. X ray analysis also shows that the (111) orientation in the (Ti, Al) C phase is dominant with increasing the Ti concentration.