Characteristics of 2-D Electrical Resistivity Imaging Survey for Soil

Abstract

The present work is aimed to show the efficiency of 2-D Electrical Resistivity Imaging (ERI) in probing the subsurface soil for site investigation, in addition to highlight some capabilities and characteristics of the sections acquired by 2D-ERI survey. In the field survey, where the University of Technology site is chosen for such investigation, ERI technique has been used implementing three common arrangements (Wenner, Wenner-Sclumberger and dipole-dipole). Different resolving powers have been obtained for the used arrays. Wenner-Schlumberger array gives moderate number of possible measurements and has a median depth of investigation of about 10% larger than that for the Wenner array. It is moderately sensitive to both horizontal and vertical structures, thus it might be a good compromise between the Wenner and the dipole-dipole arrays. Good agreements have been obtained between the stratigraphic columns of the site with the inversion models using the different arrays. The distribution of resistivity of the inversion models for the study site reflects the highly inhomogeneous subsurface soil with a wide variation of soil resistivity at different depths.