BEHAVIOR OF REACTIVE POWDER CONCRETE COLUMNS UNDER ECCENTRIC COMPRESSION LOADING

Abstract

The strength of concrete columns is controlled by the strength of the material and the geometry of the cross section. The use of Reactive Powder Concrete RPC technology has proven most popular with superior strength, stiffness and durability being the major advantages. An experimental investigation was carried into the behavior of RPC columns subjected to axial load with initial eccentricity. Twelve columns were prepared with 120mm square section at the midsection and were hunched at the ends to apply eccentric loading. The specimens were tested up to failure to evaluate the effects of the variation of the concrete type (normal or RPC), presence of steel fibers and longitudinal steel ratio. Experimental data on strength, lateral displacement and failure mode was obtained for each test. The comparative analysis of the experimental results showed that the use of RPC caused substantial variation in the ultimate strength and failure modes. Also, inclusion of steel fibers in RPC was an effective way to prevent spalling of the concrete cover and increase the ductility, as well as, high ratio of longitudinal reinforcement delays the buckling of the columns and increases strength.