Synthesis, Characterization and Quantum Mechanical Study of Some New 2-benzylidenehydrazinecarbothioamide Derivatives as Corrosion Inhibitors for Carbon/mild Steel in Acidic Medium.

Abstract

In this work, some of new 2-benzylidenehydrazinecarbothioamide derivatives have been prepared by condensation of thiosemicarbazide and different substituted aromatic benzaldehydes in presence of glacial acetic acid to give compounds (1-6), these compounds have characterized by its physical properties and spectroscopic methods. This work also included theoretical study to prove the ability of these compounds as corrosion inhibitors; The program package of Gaussian 09W with its graphical user interface GaussView 5.0 had used for this purpose; the methods of Density Functional Theory (DFT) with basis set of 6-311G (d,p) / hybrid function of B3LYP and semiempirical method of PM3 have been used, the study included theoretical simulation to simulate the reactivity of these compounds as corrosion inhibitors for carbon steel in gas phase, aqueous medium and in acidic medium (acidic medium is a medium contains acid that able to protonate these compounds and change them to protonated form), some parameters have calculated in both previous methods such EHOMO, ELUMO, ΔEL-H, Ionization Potential (I), Electron Affinity (A), electronegativity (χ), Global Hardness (η), Atomic Charges, Dipole Moment (μ) and Fraction of Electron Transferred from Inhibitor Molecules to the Metallic Atoms (ΔN), the resulted parameters showed that these compounds are behaving as inhibitors for corrosion of carbon steel.