Table of content

Iraqi Journal of Chemical and Petroleum Engineering

المجلة العراقية للهندسة الكيمياوية وهندسة النفط

ISSN: 19974884
Publisher: Baghdad University
Faculty: Engineering
Language: Arabic and English

This journal is Open Access

About

The Iraqi Journal of Chemical and Petroleum Engineering is a quarterly peer-reviewed scientific journal that was established in 2000 by the College of Engineering of the University of Baghdad. The Iraqi Journal of Chemical and Petroleum Engineering receives citations in the category of Chemical and Petroleum Engineering and relevant subjects.

Aims
The Iraqi journal of chemical and petroleum engineering is Open Access journal dedicated to publishing peer-reviewed research articles with respect to the subjects in fields of chemical and petroleum Engineering. In particular, petrochemical, biochemical, water treatment, electrochemical, petroleum and natural gas production and technology, and environment are the major interest of the journal. The journal aims to provide a free platform for the researches all over the world to share diverse types of knowledge and discuss the recent developments in the subjects related to the journal interest.

Objective
Objective of the journal is to promote the researches in the engineering subjects covered by journal to dissemination their intellectual products to the global community free of restriction. That achieves by making all of published articles available free of cost for all researcher through adopting Open Access publication model.

Loading...
Contact info

Aljadreah, Baghdad
Iraq
P.O Box: 47024
Phone: +964-1-7781506
Email: ijcpe@coeng.uobaghdad.edu.iq
ijcpe@yahoo.com

Table of content: 2013 volume:14 issue:4

Article
Mass Transfer Enhancement Using Extensions as Turbulence Promoters

Loading...
Loading...
Abstract

Mass transfer was studied using a rotating cylinder electrode with different lengths of legs acting as turbulence promoters. Two types of rotating cylinder ,made of brass, were examined : an enhanced cylinder one, with four rectangular extensions 10 mm long, 10 mm wide, and 1mm thick, and an enhanced cylinder two with four longitudes 30 mm long,10 mm wide, and 1mm thick. The best performance was obtained for enhanced cylinder two at low rotation speeds while enhanced cylinder one was realized at high rotation speeds. The mass transfer enhancement as compared with a normal rotating cylinder electrode, devoid of promoters, is 53% or 58% higher. The enhancement percentage decreased as rotation speeds increased further, since, seemingly, full turbulence has been reached practically by means of rotation and turbulence promoters.


Article
A Study of Water Flux through Forward Osmosis Membrane Using BrineFresh Water System

Loading...
Loading...
Abstract

The present work aims to improve the flux of forward osmosis with the use of Thin Film Composite membrane by reducing the effect of polarization on draw solution (brine solution) side.This study was conducted in two parts. The first is under the effect of polarization in which the flux and the water permeability coefficient (A) were calculated. In the second part of the study the experiments were repeated using a circulating pump at various speeds to make turbulence and reduce the effect of polarization on the brine solution side. A model capable of predicting water permeability coefficient has been derived, and this is given by the following equations: z = Z_0 + (C.R.T)/(9.8 ( d^2/D^(2 ) +1) ) [Exp. [- 9.8 ( d^2/D^(2 ) +1 ) (A.M )/ρ . t] -1]


Article
Corrosion Inhibition of Galvanic Couple Copper Alloy/Mild Steel in Cooling Water System

Loading...
Loading...
Abstract

The driving idea for the present work was to combine the effect of polyvinyl alcohol (PVA) as corrosion inhibitor with the distance between the anodic and cathodic elements of the galvanic cell, beside their area ratio, in scope of synergistic suppression of galvanic corrosion on Cu/Fe model couple, using weight loss method. The performance affecting galvanic corrosion process has been tested for three major factors affect the process: 1. Four PVA inhibitor concentrations were selected to be (0, 1000, 4000 and 7000 ppm) in simulated cooling water. 2. Two cathode: anode area ratios as 1:1 and 2.4:1. 3. Two distances apart cathode – anode as 3 and 7 cm. Maximum corrosion inhibition achieved was 86% which indicates that increasing inhibitor concentration leads to decrease dissolution process followed hydrogen evaluation Cu electrode as cathode element in galvanic cell.


Article
Permeability Prediction of Un-Cored Intervals Using FZI Method and Matrix Density Grouping Method: A Case Study of Abughirab Field/Asmari FM., Iraq

Loading...
Loading...
Abstract

Knowledge of permeability is critical for developing an effective reservoir description. Permeability data may be calculated from well tests, cores and logs. Normally, using well log data to derive estimates of permeability is the lowest cost method. This paper will focus on the evaluation of formation permeability in un-cored intervals for Abughirab field/Asmari reservoir in Iraq from core and well log data. Hydraulic flow unit (HFU) concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir quality index (RQI). Both measures are based on porosity and permeability of cores. It is assumed that samples with similar FZI values belong to the same HFU. A generated method is also used to calculate permeability in un-cored zones depending on matrix density grouping, where each group has its own permeability-porosity correlation. After applying the both methods and correlating the calculated permeability with the core permeability data it revealed that matrix density grouping is the best method to calculate permeability in un-cored zones and it is better than FZI method in this field, then the estimated permeability is distributed through the members of Asmari reservoir in Abughirab field and it is concluded that permeability in this field is generally increases toward south culmination of Abughirab field.

Keywords


Article
Kinetic Study and Simulation of Oleic Acid Esterification over Prepared NaY Zeolite Catalyst

Loading...
Loading...
Abstract

Esterification considers the most important reaction in biodiesel production. In this study, oleic acid was used as a suggested feedstock in order to study and simulate production of biodiesel. The batch esterification reaction of oleic acid was carried out at various operating conditions; temperature from 40 to 70 °C, ethanol to oleic acid molar ratio from 3/1 and 6/1 and a reaction time up to 180 min. The catalyst used was prepared NaY zeolite, which is added to the reaction mixture as 2, 5 and 10 wt.% of oleic acid. The results show that the optimum conditions, gives 0.81 conversion of oleic acid, were 6/1 molar ratio of ethanol/oleic acid, 5 wt.% NaY relative to initial oleic acid, 70°C and 60 minutes. The activation energy of the suggested model was 42692 J/mole for forward reaction and 17218 J/mole for backward reaction.


Article
Heterogeneously Catalyzed Esterification Reaction: Experimental and Modeling Using Langmuir- Hinshelwood Approach

Loading...
Loading...
Abstract

The esterification reaction of ethyl alcohol and acetic acid catalyzed by the ion exchange resin, Amberlyst 15, was investigated. The experimental study was implemented in an isothermal batch reactor. Catalyst loading, initial molar ratio, mixing time and temperature as being the most effective parameters, were extensively studied and discussed. A maximum final conversion of 75% was obtained at 70°C, acid to ethyl alcohol mole ratio of 1/2 and 10 g catalyst loading. Kinetic of the reaction was correlated with Langmuir-Hanshelwood model (LHM). The total rate constant and the adsorption equilibrium of water as a function of the temperature was calculated. The activation energies were found to be as 113876.9 and -49474.95 KJ per Kmol of acetic acid for the esterification reaction and the heat of adsorption of water. These results agreed well with the previous published data.


Article
Microfiltration Membranes for Separating Oil / Water Emulsion

Loading...
Loading...
Abstract

This research was aimed to study the efficiency of microfiltration membranes for the treatment of oily wastewater and the factors affecting the performance of the microfiltration membranes experimental work were includes operating the microfiltration process using polypropylene membrane (1 micron) and ceramic membrane (0.5 micron) constructed as candle; two methods of operation were examined: dead end and cross flow. The oil emulsion was prepared using two types of oils: vegetable oil and motor oil (classic oil 20W-50). The operating parameters studied are: feed oil concentration 50 – 800 mg/l, feed flow rate 10 – 40 l/h, and temperature 30 – 50 oC, for dead end and cross flow microfiltration. It was found that water flux decreases with increasing operating time and feed oil concentration and increases with increasing operating temperature, feed flow rate and pore size of membrane. Also, it was found that rejection percentage of oil increases with increasing flow rate and rejection percentage decreases with increasing time, feed oil concentration, feed temperature and pore size of membrane for dead end and cross flow microfiltration. In cross flow microfiltration, reject concentration (concentrate) increases with increasing flow rate, feed concentration, time and feed temperature. The dead end filter has more flux compared to cross flow filter, while, in cross flow the oil rejection percentage is best than dead end. Flux for vegetable oil is more than motor oil but rejection percentage for vegetable oil is less than that for motor oil. The highest recovery ratio was found is 44.8% for cross flow process with recirculation of concentrating stream to feed vessel. The highest rejection percentage of oil was found is 98 % and 97.8 % for cross flow and dead ends respectively.


Article
Concentration of Orange Juice Using Forward Osmosis Membrane Process

Loading...
Loading...
Abstract

Forward osmosis (FO) process was applied to concentrate the orange juice. FO relies on the driving force generating from osmotic pressure difference that result from concentration difference between the draw solution (DS) and orange juice as feed solution (FS). This driving force makes the water to transport from orange juice across a semi-permeable membrane to the DS without any energy applied. Thermal and pressure-driven dewatering methods are widely used, but they are prohibitively energy intensive and hence, expensive. Effects of various operating conditions on flux have been investigated. Four types of salts were used in the DS, (NaCl, CaCl2, KCl, and MgSO4) as osmotic agent and the experiments were performed at the concentration of the salts in the DS ranged (3.5 – 20% by wt), the temperature of DS ranged (20 – 50oC), and the flow rate of the FS and DS ranged (1 – 4 lit/min). It was observed that the optimum operating conditions are: concentration of salt = 20% by wt for CaCl2, temperature of DS = 50oC, and the flow rate of FS = 4 lit/min where at these conditions the maximum flux was obtained equal to 13.2 lit/m2.h or the total volume of the water transferred from the juice (during 3 hours and membrane area of 0.0135 m2) was 0.535 lit. NaCl performed much higher efficiency as osmotic agent than the others salts up to the concentration of 15.2%, but after 15.2% the CaCl2 was the best.

Table of content: volume: issue: