research centers


Search results: Found 4

Listing 1 - 4 of 4
Sort by

Article
Using Some Robust Methods For Handling the Problem of Multicollinearity
استعمال بعض الطرائق الحصينة في معالجة مشكلة التعدد الخطي

Authors: ghfraan esmaeel غفران اسماعيل كمال --- saif alimam سيف الامام سعدي خزعل
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2019 Volume: 25 Issue: 112 Pages: 500-514
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the regression model , Leading to adverse changes when taking linear regression as a basis for hypothesis testing .In this paper, we present some robust methods for estimating the parameters of the multiple linear regression model, a ridge regression method for based on the LTS estimator and Liu method for based on the LTS estimator, Using the simulation, these two methods were compared according to the mean squares error (MSE) , The comparison showed that the Liu-LTS method is the best in estimating the parameters of the multiple linear regression model.

يعد أنموذج الانحدار الخطي المتعدد من نماذج الانحدار المهمة التي اجتذبت العديد من الباحثين في مجالات مختلفة منها الرياضيات التطبيقية والاعمال والطب والعلوم الاجتماعية , ان نماذج الانحدار الخطية التي تتضمن عدد كبير من المتغيرات التوضيحية تكون ذات اداء ضعيف بسبب كبر التباين فضلا عن ذلك تؤدي الى استنتاجات غير دقيقة , ان احدى المشاكل المهمة في تحليل الانحدار مشكلة تعدد العلاقة الخطية حيث تعتبر واحده من اهم المشاكل التي اصبحت معروفة لدى العديد من الباحثين وكذلك تأثيراتها على أنموذج الانحدار الخطي المتعدد الى جانب تعدد العلاقة الخطية مشكلة القيم الشاذة في البيانات التي تعتبر احدى الصعوبات في بناء أنموذج الانحدار , مما يؤدي الى تغيرات عكسية عند اتخاذ الانحدار الخطي كأساس لأجراء اختبارات الفروض .نستعرض في هذا البحث بعض الطرائق الحصينة لتقدير معلمات أنموذج الانحدار الخطي المتعدد وهي طريقة انحدار الحرف بالاعتماد على مقدر المربعات الصغرى المشذبة (Ridge-LTS) وطريقة (Liu) بالاعتماد على مقدر المربعات الصغرى المشذبة (, (Liu-LTS ومن خلال استخدام المحاكاة تمت اجراء المقارنة بين هاتين الطريقتين وفق معيار المقارنة متوسط مربعات الخطأ (MSE) , واتضح من خلال المقارنة ان طريقة ((Liu-LTS هي الافضل في تقدير معلمات أنموذج الانحدار الخطي المتعدد .


Article
استعمال خوارزمية تجزئة القيم المفردة لمعالجة مشكلة التعدد الخطي (عالية الابعاد) لتحديد وتميز أهم العوامل المؤثرة على امراض القلب

Loading...
Loading...
Abstract

In this paper, one of the problems of statistical data was examined in the case of multicollinearity variables. This is the problem of linear multicollinearity. The problem multicollinearity was solved using a Singular Value Decomposition that changes the structure of the data to eliminate the problem while preserving the nature of the data in terms of the effect on the variable Affiliate.Comparative analysis and logistic analysis were used to compare the two after the application of a single value fragmentation algorithm to medical data representing recovery status and death of heart attack (y = 0 deaths, y = 1 healing) and factors affecting heart attack After the differential analysis, the most important factors with a high effect on heart attack were (emotion, heart disease, smoking, age). In the case of logistic analysis (emotion, heart disease, smoking, pressure, sugar and age) Affect the heart attack disease.

في هذا البحث تم دراسة أحد المشاكل التي تعاني منها البيانات الإحصائية في حالة المتغيرات المستقلة المتعددة وهي مشكلة التعدد الخطي اذ تم معالجة مشكلة التعدد الخطي باستعمال خوارزمية تجزئة القيمة المفردة التي تقوم بتغير هيكلية البيانات لتخلص من المشكلة مع الحفاظ على طبيعة البيانات من حيث التأثير على المتغير التابع.تم استعمال التحليل التمييزي والتحليل اللوجستي بعد تطبيق خوارزمية تجزئة القيمة المفردة على بيانات طبيه تمثل حالة البقاء على قيد الحياة وحالة الوفاة لمرض النوبة القلبية (y=0 حالة وفاة ، y=1 حالة يقاء على قيد الحياة ) والعوامل التي تؤثر على مرض النوبة القلبية ( متغيرات مستقلة تعاني مشكلة التعدد الخطي ) وبعد اجراء التحليل التمييزي وجد ان اهم العوامل ذات التأثير العالي على مرض النوبة القلبية هي ( الانفعال ، امراض القلب ، التدخين ، العمر ) وفي حالة التحليل اللوجستي وجد ( الانفعال ، امراض القلب ، والتدخين ، والضغط ، والسكر ، والعمر) هي التي تؤثر على مرض النوبة القلبية


Article
A Comparison of Parameters Estimation Methods for the Negative Binomial Regression Model under Multicollinearity Problem by Using Simulation
مقارنة طرائق تقدير معلمات أنموذج انحدار ثنائي الحدين السالب في ظل وجود مشكلة التعدد الخطي باستعمال المحاكاة

Authors: سهيل نجم عبود --- ايناس صلاح خورشيد
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2019 Volume: 25 Issue: 110 Pages: 466-488
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

This study discussed a biased estimator of the Negative Binomial Regression model known as (Liu Estimator), This estimate was used to reduce variance and overcome the problem Multicollinearity between explanatory variables, Some estimates were used such as Ridge Regression and Maximum Likelihood Estimators, This research aims at the theoretical comparisons between the new estimator (Liu Estimator) and the estimators of Maximum Likelihood (ML) and Ridge Regression (RR) by using the mean square error (MSE) criterion, where the variance of the Maximum Likelihood (ML) comes in the presence of the problem Multicollinearity between the explanatory variables. In this study, the Monte Carlo simulation was designed to evaluate the performance of estimations using the criterion for comparison, the mean square error (MSE). The simulation results showed important an estimated Liu and superior to the RR and MLE estimator Where the number of explanatory variables is (p=5) and the sample size is (n=100), where the number of explanatory variables is (p=3) and for all sizes, and also when (p=5) for all sizes except size (n=100), the RR regression method is the best.

ناقش هذا البحث مقدر متحيز لأنموذج انحدار ثنائي الحدين السالب (Negative Binomial Regression Model) ومعرف بالمقدر ليو(Liu Estimator)، اذ استعمل هذا المقدر لتقليل التباين والتغلب على مشكلة التعدد الخطي بين المتغيرات التوضيحية، كما تم استخدام بعض التقديرات منها مقدر انحدار الحرف (Ridge Regression) ومقدر الامكان الاعظم (Maximum Likelihood)، اذ يهدف هذا البحث الى المقارنات النظرية بين مقدر (Liu Estimator) ومقدرات الامكان الاعظم (Maximum Likelihood) وانحدار الحرف (Ridge Regression) باستخدام معيار متوسط مربعات الخطأ (MSE)، اذ يكون تباين مقدر الامكان الاعظم (MLE) متضخم في ظل وجود مشكلة التعدد الخطي بين المتغيرات التوضيحية، وتم في هذا البحث تصميم المحاكاة (مونت كارلوا) لتقييم اداء المقدرات باستخدام معيار مقارنة متوسط مربعات الخطأ (MSE)، حيث اظهرت نتائج المحاكاة اهمية مقدر ليو وتفوقها على مقدري انحدار الحرف (RR) والامكان الاعظم (MLE) عندما يكون عدد المتغيرات التوضيحية (p=5) ولحجم العينة (n=100)، اما عندما يكون عدد المتغيرات التوضيحية (p=3) ولكافة الحجوم، وكذلك عندما (p=5) ولكافة الحجوم ماعدا حجم العينة (n=100) طريقة انحدار الحرفRR هي الافضل.


Article
Comparison of some robust methods in the presence of problems of multicollinearity and high leverage points
المقارنة بين بعض الطرائق الحصينة في ظل وجود مشكلتي تعدد العلاقة الخطية ونقاط الانعطاف العالية

Loading...
Loading...
Abstract

The multiple linear regression model of the important regression models used in the analysis for different fields of science Such as business, economics, medicine and social sciences high in data has undesirable effects on analysis results . The multicollinearity is a major problem in multiple linear regression. In its simplest state, it leads to the departure of the model parameter that is capable of its scientific properties, Also there is an important problem in regression analysis is the presence of high leverage points in the data have undesirable effects on the results of the analysis , In this research , we present some of the robust methods in the multiple linear regression model These methods include the (Jackknife Ridge regression) methods based on the (MM) estimator and the (GM2) estimator (Modified Generalized M-estimator) . Using the Monte Carlo simulation, the two methods were compared in accordance with the comparison criterion, the mean squares error (MSE) and sample sizes (n = 20, n = 50, n = 100) and different pollution ratios (τ = 5%, 15%) , The comparison shows that (RJGM2) is the best method for estimating the parameters of the multiple linear regression model, which has the lowest value for mean squares error (MSE) compared with the rest of the other estimations.Keywords : Multiple Linear Regression , Multicollinearity, high leverage point,

يعد أنموذج الانحدار الخطي المتعدد من نماذج الانحدار المهمة والمستعملة في تحليل البيانات لمختلف مجالات العلم وعلى نطاق واسع مثل الاعمال والاقتصاد والطب والعلوم الاجتماعية، ان تعدد العلاقة الخطية مشكلة كبيرة في الانحدار الخطي المتعدد اذ تؤدي في ابسط حالتها الى ابتعاد معلمات الأنموذج المقدرة على خصائصها العلمية وغالباً ما تعطي استنتاجات مظللة، ايضاً هناك مشكلة هامة في تحليل الانحدار هو وجود نقاط الانعطاف العالية في البيانات مما تؤدي الى تأثيرات غير مرغوب بها على نتائج التحليل .نستعرض في هذا البحث بعض الطرائق الحصينة في أنموذج الانحدار الخطي المتعدد ومن هذه الطرائق طريقتي انحدار الحرف لمقدر ال جاكنايف (Jackknife Ridge Regression) بالاعتماد على مقدر (MM) (MM-estimator) ومقدر (GM2) (Modified Generalized M-estimator)، ومن خلال استعمال المحاكاة بأسلوب مونت كارلو تمت اجراء المقارنة بين هاتين الطريقتين وفق معيار المقارنة متوسط مربعات الخطأ (MSE) ولحجوم عينات (n=100،n=50،n=20) ونسب تلوث مختلفة ، واتضح من خلال المقارنة ان طريقة ((RJGM2 هي الافضل في تقدير معلمات أنموذج الانحدار الخطي المتعدد و يمتلك اقل قيمة لمتوسط مربعات خطأ (MSE) مقارنة مع بقية المقدرات الأخرى .

Listing 1 - 4 of 4
Sort by
Narrow your search

Resource type

article (4)


Language

Arabic and English (3)

Arabic (1)


Year
From To Submit

2019 (4)