research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
Correlation of Vapor-Liquid Equilibrium for non ideal systems using infinite pressure mixing rules

Author: Dr. Mahmoud O. Abdullah
Journal: AL-NAHRAIN JOURNAL FOR ENGINEERING SCIENCES مجلة النهرين للعلوم الهندسية ISSN: 25219154 / eISSN 25219162 Year: 2012 Volume: 15 Issue: 2 Pages: 206-214
Publisher: Al-Nahrain University جامعة النهرين

Loading...
Loading...
Abstract

Keywords


Article
Prediction and Correlations of Residual Entropy of Superheated Vapor for Pure Compounds

Authors: Mahmoud O. Abdullah --- Sarmad T. Najim --- Shahad Z. Atta
Journal: Iraqi Journal of Chemical and Petroleum Engineering المجلة العراقية للهندسة الكيمياوية وهندسة النفط ISSN: 19974884/E26180707 Year: 2012 Volume: 13 Issue: 2 Pages: 11-27
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Prediction of accurate values of residual entropy (SR) is necessary step for the calculation of the entropy. In this paper, different equations of state were tested for the available 2791 experimental data points of 20 pure superheated vapor compounds (14 pure nonpolar compounds + 6 pure polar compounds). The Average Absolute Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found from these results that the Lee-Kesler equation was the best (more accurate) one compared with the others, but this equation is sometimes not very preferable. It was noted that SRK equation was the closest one in its accuracy to that of the Lee-Kesler equation in calculating the residual entropy SR of superheated vapor, but it was developed primarily for calculating vapor-liquid equilibrium and to overcome this problem, efforts were directed toward the possibility of modifying SRK equation to increase its accuracy in predicting the residual entropy as much as possible. The modification was made by redefining the parameter α in SRK equation to be a function of reduced pressure, acentric factor, and polarity factor for polar compounds in addition to be originally function of reduced temperature and n parameter –which is also function of acentric factor– by using statistical methods. This correlation is as follows: This new modified correlation decreases the deviations in the results obtained by using SRK equation in calculating SR when comparing with the experimental data. The AAD for 2791 experimental data points of 20 pure compounds is 4.3084 J/mol.K while it becomes 2.4621 J/mol.K after modification. Thus SRK equation after this modification gives more accurate results for residual entropy of superheated vapor of pure 20 compounds than the rest of the equations mentioned above.


Article
Vapor-Liquid-Liquid Equilibrium (VLLE) Data for the Systems Ethyl acetate + Water, Toluene + Water and Toluene + Ethyl acetate + Water at 101.3 kPa. Using Modified Equilibrium Still

Loading...
Loading...
Abstract

Isobaric Vapor-Liquid-Liquid equilibrium data for the binary systems ethyl acetate + water, toluene + water and the ternary system toluene + ethyl acetate + water were determined by a modified equilibrium still, the still consisted of a boiling and a condensation sections supplied with mixers that helped to correct the composition of the recycled condensed liquid and the boiling temperature readings in the condensation and boiling sections respectively. The VLLE data where predicted and correlated using the Peng-Robinson Equation of State in the vapor phase and one of the activity coefficient models Wilson, NRTL, UNIQUAC and the UNIFAC in the liquid phase and also were correlated using the Peng-Robinson Equation of State in both the vapor and liquid phases.

Keywords

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (2)


Year
From To Submit

2012 (2)

2011 (1)