research centers


Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Article
RUF procedures forgetting the best subset linear regression model"
خطوات استخدام RUF للحصول على افضل نموذج (جزئي) للانحدار الخطي"

Author: صباح فرج عبد الحسين
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2012 Volume: 18 Issue: 66 Pages: 357-386
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The purpose behind building the linear regression model is to describe the real linear relation between any explanatory variable in the model and the dependent one, on the basis of the fact that the dependent variable is a linear function of the explanatory variables and one can use it for prediction and control. This purpose does not cometrue without getting significant, stable and reasonable estimatros for the parameters of the model, specifically regression-coefficients. The researcher found that "RUF" the criterian that he had suggested accurate and sufficient to accomplish that purpose when multicollinearity exists provided that the adequate model that satisfies the standard assumpitions of the error-term can be assigned. It is wrong to ignore the assumptions and depend directly on the least "MSE & PRESS" and greatest " " because it satisfies the model with false fit to data, whereas the regession coefficients are still unstable and unreasonable because of the multicollinearity and the effect of the error-term on the explanatory and predicted power. So the researcher has made procedures for using his criterion "RUF" to get the real best subset linear model.

ان الغرض من بناء نموذج الانحدار الخطي هو وصف العلاقة الخطية (الحقيقية) ما بين كل متغير تفسيري في النموذج والمتغير المعتمد، على اساس ان المتغير المعتمد هو دالة خطية للمتغيرات التفسيرية، وبما يسمح باستخدام هذه الدالة في التنبؤ والسيطرة. وهذا الغرض لا يتحقق من دون الحصول على مقدرات معنوية ومستقرة ومعقولة لمعلمات النموذج الخطي. وقد وجد الباحث ان المعيار الذي سبق وان اقترحه واسماه RUF هو المعيار الدقيق والكافي للوصول الى هذا الغرض في حالة وجود مشكلة التعدد الخطي، وان ذلك مرتبط بتحديد النموذج الوافي الذي يحقق الفرضيات القياسية لحد الخطأ وليس بتجاوزها والاعتماد مباشرة على معايير (اصغر متوسط مربعات البواقي MSE واصغر مجموع مربعات للبواقي التنبؤية PRESS واكبر قيمة لمعامل التحديد المعدل ) فذلك من شانه الحصول على نموذج يحقق مطابقة ظاهرية للبيانات تضلل الباحث وتوهمه بانه قد حصل على نموذج الانحدار الخطي الافضل خلافا للحقيقة التي تشير الى ان مقدرات معاملات الانحدار في هذا النموذج (غير مستقرة وغير معقولة) لانها تعاني من قوة العلاقات الخطية فيما بينها وتاثير حد الخطأ في قوتها التفسيرية والتنبؤية. وعلى هذا الاساس حدد الباحث عدة خطوات لاستخدام RUF في الحصول على افضل نموذج (جزئي) للانحدار الخطي.


Article
Model Estimated Building in Finite Population Sampling
نموذج مبنى تقديرياً في مجتمع محدود المعاينة

Authors: أ‌.صباح هادي --- سليم الغرابي --- . إيمان محمد
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2016 Volume: 22 Issue: 87 Pages: 384-390
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The population is sets of vocabulary common in character or characters and it’s study subject or research . statistically , this sets is called study population (or abridgement population ) such as set of person or trees of special kind of fruits or animals or product any country for any commodity through infinite temporal period term ... etc.The population maybe finite if we can enclose the number of its members such as the students of finite school grade . and maybe infinite if we can not enclose the number of it is members such as stars or aquatic creatures in the sea . when we study any character for population the statistical data is concentrate by two method , the first method is census which we concentrate the data for each singular of population , and the second method is sampling method which we concentrate the data for part of population such as this part (sample) have the sane characters of population which we taken . This research proposes estimation for some of parameters in finite population sampling, such we use the estimation of average of the model and obtaining of the Best Unbiased Estimator of average of finite population by the Fuller use. This research also proposes some robust estimators of the finite population mean which suitable in the presence of some outlying observations. The robust estimators are derived on the basis of certain predictive influence functions

المجتمع هو مجموعات من المفردات تشترك في صفة او صفات وتكون موضوع دراسة او بحث ويطلق على هذه المجموعات احصائيا مجتمع الدراسة ( او اختصارا المجتمع population )وقد يكون المجتمع مجموعة ما من البشر او اشجار انواع معينة من الفاكهة او الحيوانات او انتاج دولة ما لسلع معينة خلال فترة زمنية محددة ... الخ . والمجتمع قد يكون محدودا اذا كان يمكن حصر عدد افراده مثل سكان مدينة ما او طلاب مرحلة دراسية معينة وقد يكون المجتمع غير محدود ( لانهائي ) اذا كان لا يمكن حصر عدد افراده مثل النجوم او الكواكب او الكائنات الحية بمياه البحار . ولغرض دراسة صفات معينة لمجتمع ما فان البيانات الاحصائية تجمع بأحد اسلوبين هما اسلوب الحصر الشامل وفيه تجمع البيانات عن كل مفردة من مفردات المجتمع واسلوب المعاينة وفيه يتم جمع البيانات عن جزء من مفردات المجتمع يطلق عليه عينة تحمل صفات المجتمع المسحوبة منه ثم يتم تعميم النتائج على المجتمع بأكمله .يعرض هذا البحث تقدير بعض مقدرات المجتمع محدود المعاينة حيث تم استخدام تقدير معدل النموذج والحصول على أفضل نموذج غير متحيز لمقدرات معدل مجتمع محدود باستخدام النتيجة التي استخدمها Fuller. كذلك تم عرض بعض المقدرات الحصينة للمتوسطات في مجتمع محدود المعاينة والتي تكون ملائمة في حالة وجود بعض المشاهدات الشاذة وهذه المقدرات الحصينة تشتق على أساس الدوال الفعالة التنبؤية الحقيقية.


Article
Comparison of Partial Least Squares and Principal Components Methods by Simulation
مقارنة بين طرائق المربعات الصغرى الجزئية و المركبات الرئيسية باستعمال المحاكاة

Author: رباب عبد الرضا صالح
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2016 Volume: 22 Issue: 87 Pages: 50-71
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The methods of the Principal Components and Partial Least Squares can be regard very important methods in the regression analysis, where they are used to convert a set of highly correlated variables to a set of new independent variables, known components and those components are be linear and orthogonal independent from each other , the methods are used to reduce dimensions in regression analysis In this paper , we use Partial Least Squares method with Non -linear Iterative partial least squares NIPALS(PLS1) algorithm and the principal components method with Singular Value Decomposition(SVD )algorithm , the simulation experiments are conduct to compare between their methods assuming that the error is normally distributed , several combination are supposed in simulation for both sample size, number of observation, dimension, and we find that the partial least squares method is better than the Principal Components method in two case, number of observation is greater than the number of variables(n>p) and the number of variables is greater than the number of observation (p>n).

تعد طريقة المركبات الرئيسة والمربعات الصغرى الجزئية من الطرائق المهمة في تحليل الانحدار حيث ان الاثنان تستعملان لتحويل مجموعه من المتغيرات ذات الارتباط العالي الى مجموعة من المتغيرات المستقلة الجديدة تعرف بالمركبات وتكون هذه المركبات خطية متعامدة مستقلة بعضها عن البعض الاخر باستعمال تحويلات خطية ويستعمل الاثنان ايضا في تخفيض الابعاد . تم في هذا البحث استعمال طريقة المربعات الصغرى الجزئية باستعمال خوارزمية التكرار غير الخطي للمربعات الصغرى الجزئية Non-linear Iterative partial least squares NIPALS(PLS1) وطريقة انحدار المركبات الرئيسية بخوارزمية تجزئة القيم المفردة ((SVD) Singular value decomposition ).اذ تم اجراء المقارنة للطريقتين المذكورتين آنفا من خلال تجارب المحاكاة عندما يتوزع الخطأ توزيعا طبيعيا لحجوم عينات وابعاد متغيرات مختلفة ، واتضح من خلال المقارنة ان طريقة المربعات الصغرى الجزئية افضل من طريقة المركبات الرئيسية في حالة كون عدد المشاهدات اكبر من عدد المتغيرات وكذلك في حالة كون عدد المتغيرات اكبر من عدد المشاهدات. .


Article
discriminate analysis and logistic regression existence of multicolleniarty problem(Empirical Study on Anemia)
التحليل المميز والانحدار اللوجستي بوجود مشكلة التعدد الخطي (دراسة تطبيقية على مرض فقر الدم)

Authors: رباب عبد الرضا صالح البكري --- محمد شاكر محمود العزي
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2017 Volume: 23 Issue: 99 Pages: 373-397
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Abstract The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression. In this, search the comparison between binary logistic regression and linear discriminant function using error Category. In the practical side in the collection of data on the data on anemia collection Two variables are severe anemia (0) and and chronic anemia (1) and several variables about the disease. The Data were collected from several Iraqi hospitals, where samples collected from patients at the hospital are asleep, and previous cases lay in the hospital a sample of (140) the patient is infected with the disease. When the test data and found that Multicollinearity problem, It has been processed using a method partial least square. The research found that linear discriminant function It is the best in the classification of data from binary logistic regression classified as linear discriminant function the data correctly and more accurate than binary logistic regression.

المستخلصتعد طريقة الانحدار اللوجستي الثنائي Binary logistic regression والدالة المميزة الخطية Linear discriminant function من اهم الطرائق الاحصائية المستخدمة في التصنيف والتنبؤ، عندما تكون البيانات من النوع الثنائي (0،1) فانه لا يمكن استخدام الانحدار الاعتيادي فلذلك نلجأ الى الانحدار اللوجستي الثنائي والدالة المميزة الخطية في حالة وجود مجموعتين، وفي حالة وجود مشكلة التعدد الخطي Multicollinearity بين البيانات (ان البيانات يوجد فيها ارتباطات عالية بين المتغيرات) اصبح عدم الامكان في استخدام الانحدار اللوجستي والدالة المميزة الخطية، ولحل هذه المشكلة نلجأ الى طريقة انحدار المربعات الصغرى الجزئية Partial least square regression لحل مشكلة التعدد الخطي.وقد جرى في هذه البحث المقارنة بين الانحدار اللوجستي الثنائي binary logistic regression والدالة المميزة الخطية linear discriminant function عن طريق خطأ التصنيف. حيث تم جمع بيانات عن مرض فقر الدم بمتغيرين هما فقر الدم الحاد بالرمز (0)، وفقر الدم المزمن بالرمز (1) وبعدة متغيرات حول المرض. جمعت البيانات من عدة مستشفيات عراقية، وجمعت عينة من المرضى الراقدين في المستشفى وحالات سابقة رقدت في المستشفى بعينة قدرها (140) مريضاً مصاباً بهذا المرض. وعند اختبار البيانات وجدت ان هناك مشكلة التعدد الخطي Multicollinearity تمت معالجتها بأستعمال طريقة المربعات الصغرى الجزئية Partial least square.وتوصل البحث الى ان الدالة المميزة الخطية linear discriminant function هي أفضل في تصنيف البيانات من الانحدار اللوجستي الثنائي binary logistic regression، اذ صنفت الدالة المميزة البيانات بشكل صحيح وأكثر دقة من الانحدار اللوجستي الثنائي.


Article
The use of the Principal components and Partial least squares methods to estimate the parameters of the logistic regression model in the case of linear multiplication problem
استعمال طريقتي المركبات الرئيسية والمربعات الصغرى الجزئية لتقدير معلمات أنموذج الانحدار اللوجستي ثنائي الاستجابة في حالة وجود مشكلة التعدد الخطي

Authors: محمود مهدي البياتي --- هديل حميد شاكر
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 106 Pages: 338-355
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. The large number of explanatory variables usually used to illustrate the response led to the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not very accurate. In this paper, examined methods for estimating the parameters of the logistic regression model in the case of the problem of linear multiplicity These methods are: Principal components of logistic regression method and Partial least square regression method. The results of the simulation showed that the method (PCLR(3pc’s)) is best for estimating the parameters of the binary logistic regression model response in the case of a problem of linear multiplicity.

المستخلصيعد أنموذج الانحدار اللوجستي من النماذج اللاخطية الذي يهدف الى الحصول على مقدرات تمتلك كفاءة عالية , كما انه يعطي الباحث فكره عن مقدار تأثير المتغير التوضيحي على متغير الاستجابة الثنائية.أن العدد الكبير لمتغيرات توضيحية تستعمل عادة لتوضيح الاستجابة ادى الى ظهور مشكلة التعدد الخطي بين المتغيرات التوضيحية التي تجعل تقدير معلمات النموذج ليست دقيقة جدا.يتم عرض في هذا البحث طريقتين لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي (Multicollinearity) وهما : طريقة المركبات الرئيسية للانحدار اللوجستي (PCLR), وطريقة انحدار المربعات الصغرى الجزئية(PLSR). اذ تم اجراء المقارنة بين هاتين الطريقتين من خلال اسلوب المحاكاة وبأستعمال معيار المقارنة متوسط مربعات الخطأ(MSE) للوصول الى الطريقة الأفضل في تقدير المعلمات في حالة وجود مشكلة التعدد الخطي, وقد بينت نتائج المحاكاة أن طريقة (PCLR(3pc’s)) هي الافضل في تقدير معلمات أنموذج الانحدار اللوجستي ثنائي الاستجابة في حالة وجود مشكلة التعدد الخطي.


Article
Comparison of the method of partial least squares and the algorithm of singular values decomposion to estimate the parameters of the logistic regression model in the case of the problem of linear multiplicity by using the simulation
مقارنة بين طريقة المربعات الصغرى الجزئية وخوارزمية تجزئة القيم المفردة لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي بأستعمال المحاكاة

Authors: محمود مهدي البياتي --- هديل حميد شاكر
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 109 Pages: 458-471
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate. The methods used to estimate the parameters of the logistic regression model in the case of the linear multiplication problem. These methods are the method of regression of the partial least squares and the algorithm of singular value decomposion. The simulation method was used to compare estimation methods through the mean error squares of the model. It has been shown through the comparison that the algorithm of singular value decomposion is best in estimating the parameters of the logistic regression model in the case of the problem of linear multiplicity

يعد أنموذج الانحدار اللوجستي من النماذج الاحصائية المهمة حيث يوضح العلاقة بين المتغير التابع ثنائي الاستجابة والمتغيرات التوضيحية (التفسيرية).أن العدد الكبير لمتغيرات توضيحية تستعمل عادة لتوضيح الاستجابة ادى الى ظهور مشكلة التعدد الخطي(Multicollinearity) بين المتغيرات التوضيحية التي تجعل تقدير معلمات النموذج ليست دقيقة.تم في هذا البحث استعمال طرائق لتقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي وهذه الطرائق هي طريقة انحدار المربعات الصغرى الجزئية(PLSR) و خوارزمية تجزئة القيم المفردة(SVD), اذ تم استخدام اسلوب المحاكاة للمقارنة بين طرائق التقدير من خلال متوسط مربعات الخطأ(MSE) للأنموذج.واتضح من خلال المقارنة أن خوارزمية تجزئة القيم المفردة (SVD) هي الافضل في تقدير معلمات أنموذج الانحدار اللوجستي في حالة وجود مشكلة التعدد الخطي.


Article
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
مقارنة بين طرائق انحدار الحرف ونوع ليو في تقدير معلمات أنموذج انحدار ثنائي الحدين السالب في ظل وجود مشكلة التعدد الخطي باستخدام المحاكاة

Authors: سهيل نجم عبود --- ايناس صلاح خورشيد
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 109 Pages: 515-534
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonlinear regression model or part of the general exponential family. This is the basic structure of the Count Data Analysis, which was used as an alternative to the Poisson model when there is a problem with overdisperison Where the variation value of the response variable (Y) is greater than its arithmetic mean ,The Monte Carlo study was designed to compare the Ridge Regression Estimator and the Liu Type Estimator By using the standard Compare Mean Square Error (MSE), A simulation result showed that the method of the Liu Type estimator is better than the Ridge Regression Method, The Mean Square Error in Liu Type Estimator are lower in the third and fourth estimation formulas.

الخلاصة ان مشكلة التعدد الخطي من المشاكل الشائعة والتي تتعامل الى حد كبير مع الارتباط الداخلي بين المتغيرات التوضيحية وتظهر هذه المشكلة خصوصا في الاقتصاد والبحوث التطبيقية، ويكون لمشكلة التعدد الخطي تاثير سلبي على أنموذج الانحدار مثل وجود درجة تباين متضخم وتقدير معلمات تكون غير مستقرة عندما نستخدم مقدرات المربعات الصغرى الاعتيادية (OLS) ، لهذا تم اللجوء الى استخدام طرائق اخرى لتقدير معلمات أنموذج ثنائي الحدين السالب منها طريقة مقدر انحدار الحرف ومقدر نوع ليو، ويعتبر أنموذج انحدار ثنائي الحدين السالب (Negative Binomial Regression Model) كأنموذج انحدار غير خطي او كجزء من العائلة الاسية المعممة و هذا ألانموذج الهيكل الاساسي لتحليل بيانات العد (Count Data) و الذي استخدم كبديل لنموذج بواسون عندما تكون هناك مشكلة فوق التشتت (Overdisperison) اي عندما تكون قيمة تباين متغير الاستجابة (Y) اكبر من وسطه الحسابي ، وتم تصميم دراسة محاكاة مونت كارلوا للمقارنة بين طريقتي تقدير انحدار الحرف (Ridge Regression Estimator) ومقدر نوع ليو (Liu Type Estimator) من خلال استخدام معيار مقارنة متوسط مربعات الخطأ (MSE)، حيث بينت نتيجة المحاكاة ان طريقة مقدر نوع ليو هي افضل من طريقة مقدر انحدار الحرف اذ جاءت متوسط مربعات الخطأ لها اقل في صيغته التقديرية الثالثة والرابعة .


Article
Using Some Robust Methods For Handling the Problem of Multicollinearity
استعمال بعض الطرائق الحصينة في معالجة مشكلة التعدد الخطي

Authors: ghfraan esmaeel غفران اسماعيل كمال --- saif alimam سيف الامام سعدي خزعل
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2019 Volume: 25 Issue: 112 Pages: 500-514
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The multiple linear regression model is an important regression model that has attracted many researchers in different fields including applied mathematics, business, medicine, and social sciences , Linear regression models involving a large number of independent variables are poorly performing due to large variation and lead to inaccurate conclusions , One of the most important problems in the regression analysis is the multicollinearity Problem, which is considered one of the most important problems that has become known to many researchers , As well as their effects on the multiple linear regression model, In addition to multicollinearity, the problem of outliers in data is one of the difficulties in constructing the regression model , Leading to adverse changes when taking linear regression as a basis for hypothesis testing .In this paper, we present some robust methods for estimating the parameters of the multiple linear regression model, a ridge regression method for based on the LTS estimator and Liu method for based on the LTS estimator, Using the simulation, these two methods were compared according to the mean squares error (MSE) , The comparison showed that the Liu-LTS method is the best in estimating the parameters of the multiple linear regression model.

يعد أنموذج الانحدار الخطي المتعدد من نماذج الانحدار المهمة التي اجتذبت العديد من الباحثين في مجالات مختلفة منها الرياضيات التطبيقية والاعمال والطب والعلوم الاجتماعية , ان نماذج الانحدار الخطية التي تتضمن عدد كبير من المتغيرات التوضيحية تكون ذات اداء ضعيف بسبب كبر التباين فضلا عن ذلك تؤدي الى استنتاجات غير دقيقة , ان احدى المشاكل المهمة في تحليل الانحدار مشكلة تعدد العلاقة الخطية حيث تعتبر واحده من اهم المشاكل التي اصبحت معروفة لدى العديد من الباحثين وكذلك تأثيراتها على أنموذج الانحدار الخطي المتعدد الى جانب تعدد العلاقة الخطية مشكلة القيم الشاذة في البيانات التي تعتبر احدى الصعوبات في بناء أنموذج الانحدار , مما يؤدي الى تغيرات عكسية عند اتخاذ الانحدار الخطي كأساس لأجراء اختبارات الفروض .نستعرض في هذا البحث بعض الطرائق الحصينة لتقدير معلمات أنموذج الانحدار الخطي المتعدد وهي طريقة انحدار الحرف بالاعتماد على مقدر المربعات الصغرى المشذبة (Ridge-LTS) وطريقة (Liu) بالاعتماد على مقدر المربعات الصغرى المشذبة (, (Liu-LTS ومن خلال استخدام المحاكاة تمت اجراء المقارنة بين هاتين الطريقتين وفق معيار المقارنة متوسط مربعات الخطأ (MSE) , واتضح من خلال المقارنة ان طريقة ((Liu-LTS هي الافضل في تقدير معلمات أنموذج الانحدار الخطي المتعدد .


Article
استعمال خوارزمية تجزئة القيم المفردة لمعالجة مشكلة التعدد الخطي (عالية الابعاد) لتحديد وتميز أهم العوامل المؤثرة على امراض القلب

Loading...
Loading...
Abstract

In this paper, one of the problems of statistical data was examined in the case of multicollinearity variables. This is the problem of linear multicollinearity. The problem multicollinearity was solved using a Singular Value Decomposition that changes the structure of the data to eliminate the problem while preserving the nature of the data in terms of the effect on the variable Affiliate.Comparative analysis and logistic analysis were used to compare the two after the application of a single value fragmentation algorithm to medical data representing recovery status and death of heart attack (y = 0 deaths, y = 1 healing) and factors affecting heart attack After the differential analysis, the most important factors with a high effect on heart attack were (emotion, heart disease, smoking, age). In the case of logistic analysis (emotion, heart disease, smoking, pressure, sugar and age) Affect the heart attack disease.

في هذا البحث تم دراسة أحد المشاكل التي تعاني منها البيانات الإحصائية في حالة المتغيرات المستقلة المتعددة وهي مشكلة التعدد الخطي اذ تم معالجة مشكلة التعدد الخطي باستعمال خوارزمية تجزئة القيمة المفردة التي تقوم بتغير هيكلية البيانات لتخلص من المشكلة مع الحفاظ على طبيعة البيانات من حيث التأثير على المتغير التابع.تم استعمال التحليل التمييزي والتحليل اللوجستي بعد تطبيق خوارزمية تجزئة القيمة المفردة على بيانات طبيه تمثل حالة البقاء على قيد الحياة وحالة الوفاة لمرض النوبة القلبية (y=0 حالة وفاة ، y=1 حالة يقاء على قيد الحياة ) والعوامل التي تؤثر على مرض النوبة القلبية ( متغيرات مستقلة تعاني مشكلة التعدد الخطي ) وبعد اجراء التحليل التمييزي وجد ان اهم العوامل ذات التأثير العالي على مرض النوبة القلبية هي ( الانفعال ، امراض القلب ، التدخين ، العمر ) وفي حالة التحليل اللوجستي وجد ( الانفعال ، امراض القلب ، والتدخين ، والضغط ، والسكر ، والعمر) هي التي تؤثر على مرض النوبة القلبية


Article
A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors
مقارنة طرق تقدير معالم نموذج الانحدارفي حالة ظهور مشكلة التعدد الخطي والقيم الشاذة

Authors: غفران اسماعيل كمال --- نزار مصطفى جواد
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2009 Volume: 15 Issue: 55 Pages: 153-166
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

A simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators.

المستخلص
تستخدم المحاكاة لاختبار قوة وحصانة المقدرات لنموذج الانحدار المتعدد عند وجود مشاكل التعدد الخطي والاخطاء الغير طبيعية، وتم استخدام طرق للتقدير منها الاعتيادية والحصينة وهي طريقة المربعات الصغرى LSE، وانحدار الـ Ridge ، وطريقة القيمة المطلقة الصغرى RLAV والـ Ridge الموزون WRID وطريقة MM ومقدار انحدار الـ Ridge الحصين المعتمد على مقدار MM والذي يرمز له بالرمز RMM. ان RMM هي التعديل الى انحدار الـ Ridge المدمج مع مقدر MM الحصين. وقد وجد ان طريقة RMM هي افضل من الطرق الاخرى .

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search

Resource type

article (14)


Language

Arabic and English (8)

Arabic (4)

English (1)


Year
From To Submit

2019 (3)

2018 (4)

2017 (1)

2016 (4)

2012 (1)

More...