research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
discriminate analysis and logistic regression existence of multicolleniarty problem(Empirical Study on Anemia)
التحليل المميز والانحدار اللوجستي بوجود مشكلة التعدد الخطي (دراسة تطبيقية على مرض فقر الدم)

Authors: رباب عبد الرضا صالح البكري --- محمد شاكر محمود العزي
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2017 Volume: 23 Issue: 99 Pages: 373-397
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

Abstract The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression. In this, search the comparison between binary logistic regression and linear discriminant function using error Category. In the practical side in the collection of data on the data on anemia collection Two variables are severe anemia (0) and and chronic anemia (1) and several variables about the disease. The Data were collected from several Iraqi hospitals, where samples collected from patients at the hospital are asleep, and previous cases lay in the hospital a sample of (140) the patient is infected with the disease. When the test data and found that Multicollinearity problem, It has been processed using a method partial least square. The research found that linear discriminant function It is the best in the classification of data from binary logistic regression classified as linear discriminant function the data correctly and more accurate than binary logistic regression.

المستخلصتعد طريقة الانحدار اللوجستي الثنائي Binary logistic regression والدالة المميزة الخطية Linear discriminant function من اهم الطرائق الاحصائية المستخدمة في التصنيف والتنبؤ، عندما تكون البيانات من النوع الثنائي (0،1) فانه لا يمكن استخدام الانحدار الاعتيادي فلذلك نلجأ الى الانحدار اللوجستي الثنائي والدالة المميزة الخطية في حالة وجود مجموعتين، وفي حالة وجود مشكلة التعدد الخطي Multicollinearity بين البيانات (ان البيانات يوجد فيها ارتباطات عالية بين المتغيرات) اصبح عدم الامكان في استخدام الانحدار اللوجستي والدالة المميزة الخطية، ولحل هذه المشكلة نلجأ الى طريقة انحدار المربعات الصغرى الجزئية Partial least square regression لحل مشكلة التعدد الخطي.وقد جرى في هذه البحث المقارنة بين الانحدار اللوجستي الثنائي binary logistic regression والدالة المميزة الخطية linear discriminant function عن طريق خطأ التصنيف. حيث تم جمع بيانات عن مرض فقر الدم بمتغيرين هما فقر الدم الحاد بالرمز (0)، وفقر الدم المزمن بالرمز (1) وبعدة متغيرات حول المرض. جمعت البيانات من عدة مستشفيات عراقية، وجمعت عينة من المرضى الراقدين في المستشفى وحالات سابقة رقدت في المستشفى بعينة قدرها (140) مريضاً مصاباً بهذا المرض. وعند اختبار البيانات وجدت ان هناك مشكلة التعدد الخطي Multicollinearity تمت معالجتها بأستعمال طريقة المربعات الصغرى الجزئية Partial least square.وتوصل البحث الى ان الدالة المميزة الخطية linear discriminant function هي أفضل في تصنيف البيانات من الانحدار اللوجستي الثنائي binary logistic regression، اذ صنفت الدالة المميزة البيانات بشكل صحيح وأكثر دقة من الانحدار اللوجستي الثنائي.


Article
A comparison between the logistic regression model and Linear Discriminant analysis using Principal Component unemployment data for the province of Baghdad
مقارنة بين أنموذج الانحدار اللوجستي وانموذج التحليل المميز الخطي بأستعمال المركبات الرئيسية لبيانات البطالة لمحافظة بغداد

Authors: عادلة عبد اللطيف --- رباب عبد الرضا صالح --- صباح منفي رضا
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2017 Volume: 23 Issue: 95 Pages: 367-386
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The objective of the study is to demonstrate the predictive ability is better between the logistic regression model and Linear Discriminant function using the original data first and then the Home vehicles to reduce the dimensions of the variables for data and socio-economic survey of the family to the province of Baghdad in 2012 and included a sample of 615 observation with 13 variable, 12 of them is an explanatory variable and the depended variable is number of workers and the unemployed. Was conducted to compare the two methods above and it became clear by comparing the logistic regression model best of a Linear Discriminant function written using the original data, either using Principal Component was reduced variables to 5 key factors by 62.875% of the total variance and the results were equal . That the performance of a logistic regression equal to using the original data and Principal Component, while performing a Linear Discriminant function using Principal Component was better than the original data.

ان الهدف من الدراسة هو بيان القدرة التنبؤية الافضل بين انموذج الانحدار اللوجستي والدالة المميزة الخطية باستعمال البيانات الاصليه اولا ثم المركبات الرئيسة لتقليص الابعاد بين المتغيرات لبيانات المسح الاجتماعي والاقتصادي للاسرة لمحافظة بغداد لعام 2012 وتضمنت عينة البحث 615 مفردة لـ13 متغير، 12منها متغير توضيحي والمتغير المعتمد شمل العاملين والعاطلين عن العمل، تم اجراء المقارنة بين الطريقتين اعلاه واتضح من خلال المقارنة ان انموذج الانحدار اللوجستي افضل من انموذج الدالة المميزة الخطية باستعمال البيانات الاصليه، اما باستعمال المركبات الرئيسة تم تقليص المتغيرات الى 5 عوامل رئيسيه بنسبة 62.875% من التباين الكلي وكانت النتائج متساوية للانموذجي الانحدار الوجستي والدالة المميزة الخطية. وان اداء انموذج الانحدار اللوجستي للبيانات الاصلية تقريبا متساوي من استعمال المركبات الرئيسة بينما اداء انموذج الدالة المميزة الخطية باستعمال المركبات الرئيسة كان افضل من البيانات الاصليه.


Article
discriminate analysis and logistic regression by use partial least square
التحليل المميز والانحدار اللوجستي بأستعمال المربعات الصغرى الجزئية (دراسة تجريبية (محاكاة))

Authors: رباب عبد الرضا صالح البكري --- محمد شاكر محمود العزي
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 106 Pages: 407-419
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

The method binery logistic regression and linear discrimint function of the most important statistical methods used in the classification and prediction when the data of the kind of binery (0,1) you can not use the normal regression therefore resort to binary logistic regression and linear discriminant function in the case of two group in the case of a Multicollinearity problem between the data (the data containing high correlation) It became not possible to use binary logistic regression and linear discriminant function, to solve this problem, we resort to Partial least square regression. In this, search the comparison between binary logistic regression and linear discriminant function using error Category. Where the data has been generating a variable response (Y) binery data (0,1) containing Multicollinearity problem by the samples (50-100-150-250-400) and the variables (5-10-15). Multicollinearity problem has been processed using a method partial least square The research found that linear discriminant function It is the best in the classification of data from binary logistic regression classified as linear discriminant function the data correctly and more accurate than binary logistic regression.

المستخلصيعد اسلوبي الانحدار اللوجستي الثنائي Binary logistic regression والدالة المميزة الخطية Linear discriminant function من اهم الاساليب الاحصائية المستخدمة في التصنيف والتنبؤ، عندما تكون البيانات من النوع الثنائي (0،1) فانه لا يمكن استخدام الانحدار الاعتيادي فلذلك نلجأ الى الانحدار اللوجستي الثنائي والدالة المميزة الخطية في حالة وجود مجموعتين او اكثر، وفي حالة وجود مشكلة التعدد الخطي Multicollinearity بين البيانات (ان البيانات يوجد فيها ارتباطات عالية بين المتغيرات) اصبح عدم الامكان في استخدام الانحدار اللوجستي والدالة المميزة الخطية، ولحل هذه المشكلة توجد عدة طرائق منها طريقة انحدار المربعات الصغرى الجزئية Partial least square regression لحل مشكلة التعدد الخطي.وقد جرى في هذه البحث المقارنة بين الانحدار اللوجستي الثنائي binary logistic regression والدالة المميزة الخطية linear discriminant function عن طريق خطأ التصنيف. حيث تم توليد بيانات بمتغير استجابة (Y) نوع ثنائي (0,1) تحتوي على مشكلة التعدد الخطي وبحجوم عينات (50-100-150-250-400) ومتغيرات (5-10-20). حيث تمت معالجة مشكلة التعدد الخطي بأستعمال طريقة المربعات الصغرى الجزئية Partial least square.وتوصل البحث الى ان الدالة المميزة الخطية linear discriminant function هي أفضل في تصنيف البيانات من الانحدار اللوجستي الثنائي binary logistic regression، اذ صنفت الدالة المميزة البيانات بشكل صحيح وأكثر دقة من الانحدار اللوجستي الثنائي.

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

Arabic and English (3)


Year
From To Submit

2018 (1)

2017 (2)