research centers


Search results: Found 3

Listing 1 - 3 of 3
Sort by

Article
Minimax and Semi-Minimax Estimators for the Parameter of the Inverted Exponential Distribution under Quadratic and Precautionary Loss Functions
مقدرات صغرى الكبريات وشبه صغرى الكبريات لمعلمة التوزيع الاسي المعكوس بدالتي الخسارة التربيعية والوقائية

Authors: Nadia H. Al-Noor نادية هاشم النور --- Suzan F. Bawi سوزان فرمان باوي
Journal: Albahir journal مجلة الباهر ISSN: 23125721 Year: 2017 Volume: 5 Issue: 9+10 Pages: 31-44
Publisher: AL-Abbas Holy Shrine العتبة العباسية المقدسة

Loading...
Loading...
Abstract

This paper is concerned with the problem of finding the mini max furthermoresemi-mini max estimators for the scale parameter of the inverted exponentialdistribution(IED) in the direction of applying the theorem of Lehmann correspondingto non-informative and informative prior distributions under symmetric «quadratic»and asymmetric «precautionary» loss functions. The performance of the obtainedestimators have been compared empirically through simulation experiment withrespect to their mean square errors and mean absolute percentage errors.

الكبريات لمعلمة القياس ￯ الكبريات وشبه صغر ￯ ركز هذا البحث على مسألة ايجاد مقدرات صغرمن خلال تطبيق نظرية ليمان بالتوافق مع التوزيعات الاولية (المسبقة) (IED) للتوزيع الاسي المعكوسالمعلوماتية وغير المعلوماتية بدالتي الخسارة التربيعية المتماثلة والوقائية غير المتماثلة. وقد تم مقارنة اداءالمقدرات تجريبي ً ا من خلال دراسة محاكاة استنادا الى متوسط مربعات الخطأ ومتوسط الخطأ النسبي المطلق.


Article
Bayes Estimators for the Parameter of the Inverted Exponential Distribution Under different Double informative priors
مقدرات بيز لمعلمة توزيع Inverted Exponential باستعمال دوال معلوماتية مضاعفه

Author: . Jinan Abbas Naser Al-obedy
Journal: journal of Economics And Administrative Sciences مجلة العلوم الاقتصادية والإدارية ISSN: 2227 703X / 2518 5764 Year: 2018 Volume: 24 Issue: 103 Pages: 18-42
Publisher: Baghdad University جامعة بغداد

Loading...
Loading...
Abstract

In this paper, we present a comparison of double informative priors which are assumed for the parameter of inverted exponential distribution.To estimate the parameter of inverted exponential distribution by using Bayes estimation ,will be used two different kind of information in the Bayes estimation; two different priors have been selected for the parameter of inverted exponential distribution. Also assumed Chi-squared - Gamma distribution, Chi-squared - Erlang distribution, and- Gamma- Erlang distribution as double priors. The results are the derivations of these estimators under the squared error loss function with three different double priors. Additionally Maximum likelihood estimation method (MLE) was used to estimate the parameter of inverted exponential distribution .We used simulation technique, to compare the performance for each estimator, several cases from inverted exponential distribution for data generating, for different samples sizes (small, medium, and large).Simulation results shown that the best method is the bayes estimation according to the smallest values of mean square errors( MSE) for all samples sizes (n) comparative to the estimated values by using MLE . According to obtained results, we see that when the double prior distribution for is Gamma- Erlang distribution for some values for the parameters a, b & given the best results according to the smallest values of mean square errors (MSE) comparative to the same values which obtained by using Maximum likelihood estimation (MLE) for the assuming true values for and for all samples sizes.

في هذا البحث , نقدم مقارنة لدوال معلوماتية مضاعفة التي تفترض لمعلمة توزيع الاسي المقلوب, لتقدير معلمة توزيع الاسي المقلوب باستعمال تقديربيز.استخدمنا نوعين مختلفين من المعلومات في طريقة تقدير بيز, اختيرت نوعين مختلفين من الدوال الاولية لمعلمة توزيع الاسي المقلوب .هنا افترضنا توزيع مربع كاي – كاما , توزيع مربع كاي- ارلنك وتوزيع كاما - ارلنك كدوال معلوماتية مضاعفه, نتائج الاشتقاقات لتلك المقدرات باستعمال دالة الخسارة التربيعية مع ثلاثة دوال معلوماتية مضاعفه. كذلك استعملنا طريقة الامكان الاعظم (MLE) لتقدير معلمة توزيع الاسي المقلوب . استعمل اسلوب المحاكاة في مقارنة اداء كل مقدر, بافتراض عدة حالات لمعلمة توزيع الاسي المقلوب استعملت لتوليد البيانات ولاحجام مختلفة من العينات (صغيرة , متوسطة , كبيرة ). وقد اظهرت نتائج المحاكاة بان طريقة بيز الافضل وفقا لمقياس اقل قيمة متوسط مربع الاخطاء (MSE) , مقارنة بطريقة الإمكان الأعظم (MLE) .وفقا للنتائج المستحصلة , نرى بانه عندما تكون الدالة المعلوماتية المضاعفة هي توزيع كاما - ارلنك عند قيم معينة لمعلمات الدالة المعلوماتية المضاعفة , اعطى نتائج افضل وفقا لاقل قيمة لـمتوسط مربعات الخطاء ( MSE) مقارنة بنفس القيم المستحصلة بطريقة الامكان الاعظم (MLE),عندما تكون القيمة الحقيقة المفترضة لـ ولكل حجوم العينات (n).


Article
Comparative to the Bayes Estimators for the Scale Parameter of the Nakagami Distribution Under Different Double Prior Functions
مقارنة لمقدرات بيز لمعلمة القياس للتوزيع Nakagami باستعمال دوال أولية مضاعفة مختلفة

Author: جنان عباس ناصر العبيدي
Journal: Journal of Baghdad College of Economic sciences University مجلة كلية بغداد للعلوم الاقتصادية الجامعة ISSN: 2072778X Year: 2019 Issue: 58 Pages: 371-394
Publisher: Baghdad College of Economic Sciences كلية بغداد للعلوم الاقتصادية

Loading...
Loading...
Abstract

In this study, we used Bayesian method to estimate scale parameter for the Nakagami distribution. By considering several of double prior distributions for the scale parameter of the Nakagami distribution ,it means we have two different information about the prior distributions , such as inverted exponential- levy distribution and inverted exponential -gumbel type-II distribution and levy - gumbel type-II distribution and Inverted exponential -non- informative distribution and levy- Non- informative distribution and gumbel type-II - non- informative distribution.We derived the posterior distribution for the scale parameter of the Nakagami distribution according to each of double prior distributions. Also, we derived bayes estimators for the scale parameter of the Nakagami distribution based on squared error loss function. we used simulation technique to compare between these estimators. Several cases from Nakagami distribution for data generating, or different sample sizes (small, medium, and large),by programs written using MATLAB-R2017b program.Simulation results shown that the best estimation for the scale parameter for the Nakagami distribution according to the smallest value of MSE all sample sizes, when the double prior distribution is gumbel type-II- Non- Informative distribution with the parameters for and and .Also, when the double prior distribution is inverted exponential -gumbel type-II distribution with the parameters for .Also, when the double prior distribution is levy- non- informative distribution with the parameters for .Also, when the double prior distribution is inverted exponential- levy distribution with the parameters with .

في هذا البحث , استعملنا أسلوب بيز لتقدير معلمة القياس لتوزيع Nakagami. بافتراض إن معلمة القياس تخضع لعد من التوزيعات الأولية المضاعفة, والتي تعني بانه لدينا معلومتين مختلفة حول التوزيع الاولي لمعلمة القياس. إذ تم افتراض عدد من التوزيعات الأولية المضاعفة لمعلمة القياس لتوزيع Nakagami متمثلة بـمقلوب التوزيع الاسي – توزيع Levyومقلوب التوزيع الاسي – توزيع كامبل من النوع الثاني وتوزيع Levy– توزيع كامبل من النوع الثاني ومقلوب التوزيع الاسي - توزيع غير معلوماتية و توزيع Levy- توزيع غير معلوماتية و توزيع كامبل من النوع الثاني - توزيع غير معلوماتية.فقد اشتقينا التوزيع اللاحق لمعلمة القياس لمعلمة القياس لتوزيع Nakagami وفقا لكل من التوزيعات الأولية المضاعفة المفترضة في البحث.وكذلك اشتقينا مقدرات بيز لمعلمة القياس لتوزيع Nakagami باستعمال دالة الخسارة التربيعية . وقد استعمالنا أسلوب المحاكاة لغرض المقارنة بين تلك المقدرات .إذ تم توليد البيانات ولإحجام مختلفة من العينات ( صغيرة ,متوسطة, كبيرة) من توزيع Nakagamiبكتابة برامج باستخدام MATLAB-R2017b.ونتائج المحاكاة تبين بان أفضل تقدير لمعلمة القياس وفقا لمقياس اصغر قيمة لـ MSE ولكل إحجام العينات,عندما يكون التوزيع الأولي المضاعف توزيع كامبل من النوع الثاني -توزيع غير معلوماتية بالمعلمتين عندما تكون القيمة المفترضة للمعلمتين و و . كذلك عندما يكون التوزيع الأولي المضاعف مقلوب التوزيع الاسي – توزيع كامبل من النوع الثاني بالمعلمتين ,عندما تكون القيمة المفترضة لـ . وكذلك عندما يكون التوزيع الأولي المضاعف توزيع Levy -توزيع غير معلوماتية بالمعلمتين عندما تكون القيمة المفترضة لـ .وكذلك عندما يكون التوزيع الأولي المضاعف مقلوب التوزيع الاسي– توزيعLevyبالمعلمتين عندما تكون القيمة المفترضة لـ .

Listing 1 - 3 of 3
Sort by
Narrow your search

Resource type

article (3)


Language

English (2)

Arabic (1)


Year
From To Submit

2019 (1)

2018 (1)

2017 (1)